講座時間:2019-6-13 14:00-15:30
講座地點:閔行校區生物藥學樓樹華多功能廳
主 講 人👜:中科院深圳先進技術研究院合成基因組學研究中心主任 戴俊彪研究員
主辦單位👨🦱:EON体育4平台
聯 系 人:邢海娜 (xinghaina@sjtu.edu.cn)
主講人簡介:
戴俊彪🧔🏼♀️,中國科EON4深圳先進技術研究院研究員,博士生導師。中國科EON4深圳先進技術研究院合成生物學研究所副所長👩🏽💻、合成基因組學研究中心主任。國家傑出青年科學基金獲得者🏊🏼,2018年談家楨生命科學創新獎獲得者🧑🍼,英國皇家學會牛頓高級學者基金獲得者,入選科技部中青年科技創新領軍人才🌻。本科畢業於南京大學基礎學科教學強化部,碩士畢業於清華大學生物技術與科學系🐙,2006年於美國愛荷華州立大學(Iowa State University)獲得博士學位,2006-2011年在美國約翰霍普金斯大學醫EON4(Johns Hopkins University School of Medicine) 從事博士後研究,2011-2017年擔任清華大學生命科學EON4研究員🪜。主要研究方向是開發基因和基因組的合成、組裝及轉移技術,通過基因組的設計構建解析基因組功能👩🏽🎤,並進行合成生物的改造和優化等。戴俊彪研究員是人工合成酵母基因組國際計劃(Sc2.0)和基因組編寫計劃(GP-write)的中方主要參與者,牽頭發起了“國際基因組編寫計劃•中國(GP-write China)”國際合作項目,2017年3月在《科學》雜誌上以封面和專刊的形式發表了五篇染色體合成相關文章。
內容簡介:
New technologies to synthesize DNA, facilitated by methods exploiting synthesis of oligonucleotides on microarrays for example, provides a great opportunity to completely redesign the entire genome of an organism. Together with several other groups worldwide, we aim to re-synthesize a designer eukaryotic genome, Sc2.0. In my lab, a 976,067-base pair linear chromosome, synXII, was designed and assembled using a two-step method, producing a functional chromosome. The ribosomal gene cluster (rDNA) on synXII is retained during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, commonly used as the molecule barcode of a species, are swapped to generate a Saccharomyces strain that would be identified as Saccharomyces bayanus. Furthermore, as a novel inducible system implemented in the synthetic chromosomes, SCRaMbLE is designed to generate diverse genotypes and phenotypes by massive chromosome rearrangements. We have designed a reporter of SCRaMbLEd cells using efficient selection, termed ReSCuES, based on a loxP-mediated switch of two auxotrophic markers. We show that all randomly isolated clones contained rearrangements within the synthetic chromosome, demonstrating high efficiency of selection. Using ReSCuES, we illustrate the ability of SCRaMbLE to generate strains with increased tolerance to several stress factors, such as ethanol, heat and acetic acid. In addition, by analyzing the tolerant strains, we are able to identify ACE2, a transcription factor required for septum destruction after cytokinesis, as a negative regulator of ethanol tolerance. Collectively, our work not only offers a new avenue of decoding the yeast genome through intelligent design followed by chemical synthesis, but also demonstrates our ability to reprogram the genome for future applications.
請感興趣的老師於2019年6月13日8:00之前報名🚣🏻。
報名方式:
點擊以下網址
https://mp.weixin.qq.com/s/PBq2v0y0PB7Hg131MiK9EA
2、掃描下方二維碼報名